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Abstract

In this study, firstly notions of similarity and consimilarity are given
for commutative elliptic octonion matrices. Then the Kalman-Yakubovich
s-conjugate equation is solved for the first conjugate of commutative el-
liptic octonions. Also, the notions of eigenvalue and eigenvector are
studied for commutative elliptic octonion matrices. In this regard, the
fundamental theorem of algebra and Gershgorin’s Theorem are proved
for commutative elliptic octonion matrices. Finally, some examples re-
lated to our theorems are provided.

1 Introduction

The octonion algebra is an eight-dimensional division algebra by the Cayley-
Dickson method, [17]. Since these numbers do not provide the properties of
commutative law and linear combination, their applications have been lim-
ited. Therefore, to solve the difficulties encountered in the equation of solu-
tions, studies have recently been carried out in the field of octonion matrices,
[2,4,6,14,16].

The notions such as eigenvalue and eigenvector, which have an important place
in matrix theory, are used in the solution of many equations and one of the
most important of them is the Gershgorin Theorem, which is used to deter-
mine the eigenvalues of a matrix, [1,3,7,8,9,10,11,13,15,18|.
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In this study, the similarity and consimilarity notions are given together with
the isomorphism defined between commutative elliptic octonions and their ma-
trices. Then the real-valued representation of a commutative elliptic octonion
matrix is defined and related theorems are given. Considering these theorems
and definitions, Kalman Yakubovich s-conjugate linear equation is solved. Fi-
nally, the fundamental theorem of algebra and the Gershgorin Theorem for
commutative elliptic octonions are proved, and then examples related to them
are given.

2 Algebraic Properties of Commutative Elliptic Octo-
nions
In this section, we will give the algebraic properties of the commutative ellip-
tic octonion set based on elliptic numbers and commutative octonions, which
have widely considered in the literature.
The set of commutative elliptic octonion is defined as
COp = {a = aoeo + are1 + azez + azes + aseq + ases + ages +arer [a; €R, 0 <1 <7}
where {e;; 0 <i < T} is a base of the commutative elliptic octonion.
Let a be a commutative elliptic octonion which is expressed as
a=a +ade. (1)

Since a’ = ag + a1t + asj + ask € Hy, o = as + asi + asj + a7k € Hp, the
base vectors of a commutative elliptic octonion are defined by

eo=1 es=e, e?=1 e?=1,
e1 =1, e5=1e=el, ei’=a, e?=aq, 2)
_ SO 2 _ 2 _
e2=7J, e=je=ej, e’ =1 e =1,
2

es=k, er=ke=cek, e =qa, e’=aq,
[5].

Considering the equation (1) for a commutative elliptic octonion, the conju-
gate definition for a commutative elliptic octonion is defined by the following
equations:
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a° = o'V —l—a”(l)e,
a2 — a’(z) + a//(z)e’
0% — a/(3) + a//(3)e’
a’t =a' —a'e, (3)
a% =o' _ a”(l)e,
0% — a'(2) B a”(z)e
=@ @

[5]. The expressions (1), (2) and (3) correspond to the conjugates definition
for the elliptic quaternions, [12].

Considering (3), the norm of a commutative elliptic octonion is defined as

lall® = a x a® x a® x a® x a® X a x a° x a°7

= [(ao +as —aq — a6)2 —ala; +az—as — G?)Q}

[(ao —ag +ag —ag)” — afay —as +as — a7)2} 4)
X {(ao —ay — a4 + aﬁ)2 —afla; —az —as + a7)2}

[(ao +ag + as + ag)” — afar + as + as + a7)2] >0,

[5]-

7 7
Let a = Z a;e; and b = Z b;e; be two commutative elliptic octonions, then

=0
the multlphcatlon of two commutatlve elliptic octonions is defined by the fol-
lowing equation

a X b= (aopbo + aaiby + azbs + casbs + asbs + aasbs + agbs + aarbr) ey
+ (aob1 + a1bo + a2b3 + asbs + asbs + asbs + asbr + arbe) e1
+ (aobz + aaibs + azbo + aasbr + asbs + aasbr + agbs + aazbs) e2
+ (aobs + a1bz + a2by + asbo + asb7 + asbs + acbs + arbs) e3 (5)
+ (aoba + aa1bs + azbs + aasbr + asbo + aasbr + agbz + aarbs) es
+ (aobs + a1bs + a2b7 + asbe + asb1 + asbo + asbs + arb2) €5
+ (aobs + aa1br + azbs + aasbs + asbs + aasbs + agbo + aazbi) es
+ (aob7 + a1bs + az2b2 + asbs + asbs + asbz + asb1 + azbo) ez,

[5].
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The expression of a € C'O,, in terms of an 8 X 1 dimensional matrix is given
by

7
a:Zaiei%a:[ag a1 ay a3 a4 as Qg a7 ]T€R8X1 (6)
i=0

[5].

On the other hand, considering equations (5) and (6), the multiplication of
two commutative elliptic octonions a and b is defined as

ap «a; az @as a4 Qas ag odr bo
ap ay a3 az as a4 ar Gg by
as «@as ag Qa; Qg Qar Q4 Qas bo
axb=bxa~g(@)b=| % 9 @1 G 071 G a5 g b3
ay «as ag Qary ayg Qap Qg Qa3 by
as a4 ay ag ai ap az A bs
ag Qa7 a4 «Qas as Qaz ag  Qdq bg
| a7 as a5 a4 az ax a1 ag | | b7 |

where ¢ (a) is the basic matrix of the commutative elliptic octonion a. The
function ¢ determines an isomorphism as ¢ : CO, — M, where M is the
set of elementary matrices of commutative elliptic octonions. Accordingly the
following theorem is given.

Theorem 2.1. Let a and b be two commutative elliptic octonions and By, Bo
be any real numbers. Then the following identities are held:

1) a=bepa)=9(b),

2) pla+b)=p(a)+eD),
paxb)=¢(a)p(d),

3) ¢ (ﬂsla + 2b) = Bryp (a) + B2y (D),

4) |l = |det (¢ ()|,

5) Trace (¢ (a)) = 8ap,

7
On the other hand, since a commutative elliptic octonion a = >_ a;e; can
i=0
be expressed as a hyperbolic number

a=ad +ad'e (7)
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here are @/, a”” € H,, and €* = 1.

Taking (7), the function

e : CO, = CO,
b e (b)=axb

is defined for any b € CO,, and if this transformation is considered

/ 1"
a a .
N:{<a” a’)' a,a er}

can be given. In that case, an isomorphism between a commutative elliptic
octonion and a 2 X 2 type matrix is defined by

Y :COp = N
a a
a:a/+a//€_>w(a):< " /)a

a a

[5]. Along with this isomorphism, the following theorem is given.

Theorem 2.2. Let be a € CO,, then there is 2 x 2 type of the elliptic quater-
nion matriz corresponding the matriz a, [5].

Since there is an isomorphism between commutative elliptic octonions and
matrices, similarity and consimilarity definitions defined on matrices can be
given for commutative elliptic octonions. Now, let us give definitions of simi-
larity and consimilarity.

Definition 2.1. Let a,a1,a2 € CO,, if there is a (||a]| # 0) that provides
a"laia = as, a1 and ag are called similar. This state is denoted by ai ~ as.

Definition 2.2. Let ay,a2 € CO,, if there is a € CO, (|lal]| # 0) providing

a®aja”t = aq (1<i<7), a1 and az are called consimilar. This state is

denoted by ay 5 as.

Theorem 2.3. The consimilarity relation in commutative elliptic octonions
s an equivalence relation.

Proof. Let a,aq,as2,a3 be commutative elliptic octonions. Let us show that
the relation ~ (1 <1i < 7) satisfies the following properties:
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. . Cq

t. Reflection : a1 ~aq,

.. Cq . . Cq

ii. Symmetry : a; ~ag if and only if az ~ay,

e o . Cq Cq Ciq
i33. Transitive : If a; ~ a9 and as ~ a3 then a; ~ as.

i. Since lal~! =a, a Ra s provided. Therefore, the reflection property is
provided for ~ (1<i<7).

ii. Let ay ~ay be satisfied. In other words, there is a (|ja|| # 0) providing
a®aia”' = as. Since

(a%) aga = (a®) 'a% a0t a = a;

is provided, as ~a; can be written. In this case, the relation ~ (1 <1i < 7)
provides the symmetry property.

i11. Let the relations ag fc\i/ag and agfcviag be provided. Thus, there are
commutative elliptic octonions a and b (||a|| # 0, ||b]| # 0) that satisfy, the
equations a®aija”" = as and b asb~! = a3. In this case, since

as = b%asb™t = b%a%aja b = (ba)oial(ab)*1

is provided, it becomes a1 N as, that is the property of transitive law is satisfied
for & (1<i<T).

Since conditions i, i7 and #ii are provided, ~ (1 <i<7)is an equivalence
relation. ]

As a result of this theorem, it can be asserted that the norms of two adjoint
similarity commutative elliptic octonions are equal to each other.

3 Consimilarity of Commutative Elliptic Octonion Ma-
trices

The set of m x n matrices whose members are commutative elliptic octo-
nions is a ring with addition and multiplication operations in matrices, and
it is denoted by Upxn (CO,p). Considering the conjugate definitions of com-
mutative elliptic octonions, the conjugates and transposition of the matrix
A € Upxn (CO,) are denoted by A% = (a;;°) (1<k<7) and AT €
Unxm (COp), respectively, [5].

Theorem 3.1. Let A € Up,xn (COp) and B € Uy, xs (COyp). Then the follow-
ing properties are provided for A, B
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i (A%)" = (A7) (1<k<T),

ii. (AB)T = BTAT,

iti. (AB)®" = A°*B% (1<k<T),

iv. If Aand B are invertible, (AB)™' = B~1A~!,
[5]-

Definition 3.1. Let A and B be n x n type commutative elliptic octonion
matrices. In that case, the matrices A and B are similar but there is an
invertible matriz P € Upxy, (CO,) that provides the equation P~'AP = B.
The similarities of the matrices A and B are expressed as A ~ B. ~ expression
is an equivalence relation on the set Upxn (COp).

Definition 3.2. Let A and B be n X n type commutative elliptic octonion
matrices. In that case, the matrices A and B are consimilarity but there is an
invertible matriz P € Uy, xy, (CO,) that provides the equation PeiAP~' = B
(1<i<7). The consimilarity of matriz A and B is expressed as ARB., R
(1 <1< 7) is an equivalence relation on the set Uyxrn (COp) .

Definition 3.3. Let A € Up,x, (CO,) and A € CO,. If there is a nonzero
matriz x € Upx1 (CO,) that provides the equation Az =z (1 <i<7), A
is called the commutative elliptic octonion, the coneigenvalue of the matriz A,
and the matriz x is called coneigenvector corresponding to the commutative
elliptic octonion \. The set of coneigenvalues of the matriz A is defined by

1 (A)={AeCO,: Az =zX, x#0 and 1 <i<T}.

Theorem 3.2. Let A and B € U,x, (CO,). A and B are consimilarity of
matrices whereas the matrices A and B have the same coneigenvalues.

Proof. Let A and B € Uyxn (COp) be consimilarity matrices. Then there is
an invertible matrix P € Uy, x, (CO,) that provided B = P9 AP~ (1 <i < 7).
Let A be the coneigenvalues of the matrix A and = € U,x1 (CO,) be the
eigenvector corresponding to the coneigenvalue A. In this case, Az% = zA
(1 <4 <7)is provided. If we consider the equation Y = Pz% (1 <i<7),

BY = P AP™'Y = P AP ' P2 = P%g)\ = Y\
is found. Thus, the proof is completed. O

Theorem 3.3. If the coneigenvalue of the matriz A is A, then B° A3~}
(1 <i<7) is the coneigenvalue of the A matriz where is 8 € CO, (8 #0).

Proof. If the coneigenvalue of the matrix A is A, then the equality Axz% = xA
(1 <7< 7)is provided and 0 # = € U, x1 (CO,) corresponding to commuta-
tive elliptic octonion A exists. So, since the equations Az*B~! = 237! =
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x(Boi)fl/Boi/\ﬁ_l are provided, B°A3~! (1 <i < 7) is also a coneigenvalue
for matrix A. The proof of necessary condition is easily seen and the proof is
concluded. O

Definition 3.4. Let A = Ay + Ase € Upxyn, (CO,) and 1 (A). Then the 2 x 2

dimensional matriz
(A Ay
n(A) = ( Ay Ay ) .

is adjoint matriz of A and is denoted by n (A), [5].

Theorem 3.4. Let A, B € Upxn (CO,). Then the following properties are
held;

i.1 (In) = Ian,

i.n(A+ B)=mn(A4)+n(B),

iii.n (AB) =n(A)n(B),
. w If A7V 20, (A1) = (n(A) ",
5).

Theorem 3.5. Let A € Upyx,, (CO,p) and A be the adjoint matriz of n(A).
So the set of coneigenvalues of 1 (A) is

§7 (A)NHy = &% (n(A)) (1<i<7)
where €% (n(A)) ={ € Hp: n(A) X =X\, 0#£ X € Unx1(CO,), 1<i<T}.

Proof. Let A = Ay + Age € Upxn (COp) and Ay, Ay € H}*". There is
0# X = Xq + Xoe € Uyx1(CO,) that satisfies AX% = XA (1<i<7),
where A € H), is the coneigenvalue of A. Then

(A1 4 Ase) (X177 + X%e) = (X1 + Xae) A,
A1 X % + Ao X% = X4\ and  As X % + A1 X% = X\

and

Ay =MI Ay—=XNI ][ X% ] [oO
Ay—doI Ai—MI || X% |7 |0

are written. As can be seen from the above equations, the elliptic quaternion
coneigenvalue of A is equal to the coneigenvalue of 7 (A). So

) ={ eH,: n(A)X% =X\, 0#X €U,x1(COp), 1<i<T}

is provided. O



A STUDY ON COMMUTATIVE ELLIPTIC OCTONION MATRICES 159

4 Real Representations of Commutative Elliptic Octo-
nion Matrices

Let A = Ag + A1i + Agj + Ask + Ase + Asei + Agej + Arek € Upxn (COp)
and ¢ be linear isomorphism such that ¢4 (X) = AX°* where X is any m x n
dimensional commutative elliptic octonion matrix. With this isomorphism,
the real matrix

Ao —CEAl A2 —OlAg A4 —OzA5 AG —aA7

A1 —A() A3 —A2 A5 —A4 A7 _AG

A2 —OCA3 AO —OéAl AG —OtA7 A4 —OCA5

AS —A2 Al _AO A? _AG AE) _A4 8m X 8n

¢A A4 —OCA5 A6 —OéA7 Ao —CMAl A2 —OLA3 € R (8)

As  —Ay A7 —A¢ A1 —Ao Az A

AG —CZA7 A4 —CYA5 A2 —aA3 Ao —OéAl

A7 —A6 A5 —A4 A3 —A2 Al _AO

corresponding to the base {1, i, j, k, e, ei, ej, ek} is obtained. Here, ¢a corre-
sponds to the real representation of A.

Commutative elliptic octonion matrix A is isomorphic to A € R®™*". This sit-
uation is denoted by =2 and written by

A= Ao+ Ari+ Asj + Azk + Ase + Asei + Agej + Arek = A = e R¥™xm,

In that case, considering the multiplication process defined on matrices,
AB°* ~2 ¢4B
is provided for matrices A € Up,xn (COp) and B € Upxi (COyp).

Theorem 4.1. Let A be a m X n type commutative elliptic octonion matriz. Then
the following properties are provided for A:

i (Po) oA (PS) = pacr,  (Qm) 'da (Qn) = —¢a,
(Rm) " da (Rn) =¢a,  (Sm) ' 64 (Sn) =—¢a,
(Tr) ™" ¢a (Tn) = da, Un) 'pa(Un) = —¢a,
(V)L pa (Vi) = da, (W) ™' pa (W) = —¢a,
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where

—_—

OOOOOOOM
[

cooocoo fo
~

cocococo~NOO

cooo focoo
~

coco~o0OOO

=

coococoo

0
—Im

foococococoo
~

Il
o
S

£

Q,

—_—

OOOOOOT,AmO
coooocoo £
cooco~NoO0O

coooco foo
~

coooocoo

coococoo

alm
0

o foococooo
~

Il
3
&

—

coooco foo
~
cocoo Ecoo

coocoooo

Im

coco foocoo

©co fooooo
~

I
5
=

—

coocosocoo
coococo foo
coocococoso

coocococoo £

ooo foooo
~

Il
13
0w

—

coco Soocoo
~

coocooooo &

~
cocoocoo fo
coocoo foo

cocoo fooo
~

—

3

co~NoOOoOOO
3

coo foocoo
~

~NOooooooo

o focoooo
~

cooooo

alm,
0

coococooo

Im

cooo

alm
0
0
0

ococooo foo
~

Il
g
)

—_—

o focoooo
~
foooococoo
~
coo foooo
~
oo Eoocooo
~
occooo foo

cocoo fooo

coocoooo

Im

ccoocoo fo
~

I
£

s |

3

NOoooooOo
3

o focoocoo
~

3

coooooo
3

coco foocoo
~

&

cCococo~NOoOO0
3

cococoo foo
~

coocoooNo

alm

cococococoo §
~

Wm = l



A STUDY ON COMMUTATIVE ELLIPTIC OCTONION MATRICES 161

ii. For A, B € Upxn (COp), ¢arB = ¢4 + ¢ is provided.
iii. For A € Upyn (COp) and B € Uy, (CO,),
paxp = da(Pn) dp = pagper (P7)
18 provided.

iv. If the matric A € Upxm (COp) and A is invertible, then ¢4 can be
inverted and (¢4) " = (Pn°) dpa-1 (Pn®) is provided.

1 (A) N Hy =E(0a),

including A € Upyxm (COy), is provided. Here the set& (¢pa) ={A€ Hp: ¢(A)Y =AY, 0#£Y € Upx1 (CO,p)
becomes the eigenvalue set of ¢ 4.

Proof. Proofs of i, ii and #ii are easily seen. Let’s check at the proof of the cases iv
and v.

iv. Let A € Unmxm (COp) be an invertible matrix. In that case,

Gaa-1 = ¢A(Pm)01¢A—1 = ¢18 and ¢A(Pm)01¢A—1 (Pm)01 = ¢Ism
are written from AA~! = Is. From hnere it can be seen that ¢4 is an invertible
matrix and (¢a) " = (Pm)? ¢4-1(Pm) " is found.

7

v.Let A= 3" Aie; € Unxm (COp) and A; € R™*™ (0 <s< 7). \€ Hpis the
i=0

conjugate eigenvalue of A, and there is conjugate eigenvalue 0 # X € Unx1 (COp)

corresponding to A and satisfying AX% = X\ (1 <7<7). Here, paX = X\ is

written. So, the eigenvalue of matrix ¢4 corresponds to A. As aresult, £ (A)NHp =
& (¢a) is obtained.

O
Now let’s consider the solution of
X -AX*B=C (9)

which the Kalman-Yakubovich s-conjugate equation for commutative elliptic octo-
nion matrices is. Here is A € Upmxm (COp), B € Unxn (COp) and C' € Upxn (COp).
In addition, the real representation of (9) is expressed by

Y —paY s = ¢c. (10)
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On the other hand, considering the equation ¢4 X = AX°" and the Theorem
4.1,
X—-AX*B=C & X-—-¢aXB=C
& (X —¢aXB)X% =CX*
& ¢ox — 0aXoB = ¢c
is written. As can be seen here, if X is a solution in (9) , ¢x =Y is a solution in
(10). So X —AX°'B = C has a solution if and only if for ¢x =Y, Y —¢paYdp = ¢c
is a solution.

Theorem 4.2. Let A € Upmxm (COp), B € Unxn (COp) and C € Upmxn (COp). If

Ye RB™*8" s the solution of Y —¢aY ¢ = ¢, the solution of the X —AX° B = C
is

T

Im In

iIm, ilp
1 3Im Y -0 lexQn + Ry lox R ilIn
kI, 1 —1 kln
X = 35 _3oa | elm —SmioxSn +Th ¢xTn eln . (11)
320 s m n _ s
cilm “UntéxUn + Vi tox Vn — Wwilox wy ciln
ejlm ejln
eklIm ekln

Proof. Let

Yin Yi2 Y3 Yiu Yis Yie Yir Yis
Yo1 Yo Yoz Yoy Yas Yos Yor Yag
Y31 Yz Yaz Yzs Y35 Yze Yar Yag
Y41 Y42 )/43 Y44 Y45 )/46 Y47 Y48
Y51 Ys2 Yss Ysa Yss Yse Ysr Yag
Yo1 Ye2 Yoz Yeu Yes Yes Yer Yes
Yrnn Y2 Yz Yru Y5 Yre Yo Yais
Ys1 Yso Yss Yssa Yss Yse Ysr Yas

(12)

be a solution to (10) and where Yy, € R™*" (1 < wu, v < 8) is. In that case,
since ¢x =Y, the following equations are provided;

QtoxQn = Y, U toxU, = -Y,
R 'oxR, =Y, ViloxV, =Y,
SolhyS, = Y, Wloy W, = Y, (13)

—Q'YQn — ¢4 (-Q,'YQy) o5 = b,

R'YR, —¢a (R,'YR,) ¢ = ¢c,

—S Y S, — da (—StYS,) ¢ = oc,

T YT, — pa (T,;lY'Tn) oB = ¢c, (14)
7U7;’1YUn - (rbA (7U7;1YUTL) ¢B = ¢Ca

V»,;lYVn - ¢A (K;lyvn) ¢B = ¢C7

—W YWy = da (=W, 'YW,) éB = dc,
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are written. As a result, if Y is a solution for (9), (13) are also a solution. So,

Y/ _ 1 Y — Q;zl(bXQn + R;ll(bXRn - Sn_ql¢XSn (15)
T8\ AT ox T, — UntoxUn + Vitox Vi, — Witox W,

is also a solution to (10).

Z() 70&Z1 Zg 7CMZ3 Z4 70(Z5 ZG 7aZ7
Zy —Zo Zs —Zs Zs —Zys Zi —Zs
ZQ —Ong ZO —aZ1 Z6 —aZ7 Z4 —OtZ5
’ Z3 7Z2 Z1 *Z() Z7 *ZG Z5 *Z4
Z4 —OtZ5 Zﬁ —OéZ7 Zo —Och ZQ —OtZg
Zs —Zs Zr —Ze Zv —Zo Zs —Z2
ZG 7OtZ7 Z4 7CMZ5 ZQ 70(Z3 Zo 7&21
Z7  —Ze Zs —Zs Zy —Zax Zv —Zp

is obtained with the equality of (15) where

Zy = 5 (Y11 — Yag + Y3 — Yy + Ys5 — Yo + Y77 — Yg)
21=%(—%+1’21—%+Y43—%+%5—%+Y87)

Zy =5 (Y13 — Yaga + Y31 — Yao + Y57 — Yes + Y75 — Yz6)

23§ T i A s
Zy= 5 (Y15 — Yag + Y37 — Yag + Y51 — Yoo + Y73 — Ya4)
252%(—%-1-3/25—%4-5/47—Y,?-I-Yal—%-&-Y%)

Zg = 5 (Y17 — Yag + Y35 — Yig + Y53 — You + Y71 — Yao)

A i T

Since there is ¢x =Y, the solution to (9) is

Im 1T In

il ilp

iIm Jln

. . ) . ! kIm ! klp

X =Zg+ Z1i+ Zoj + Z3k + Zye + Zyei + Zgej + Zpek = Y (18)

14— da elm el

eilm eilpn

ejlm ejln

ekIpm ekIy

Example 4.1. Let’s find X € Uax2 (COp) satisfying the equality

g beles]=li i)

Considering the equation (10), the real representation of the above equivalence is
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denoted by the following equation

If the found real matriz equation is solved, then

is obtained. Considering

dx Wn )

—1

LoxUn + Vi lox Ve — Wy

bxQn + Rylox Rn — Splox Sn+TnleoxTn — Uy,

Y — Q!

(

- | o0

bx =
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then Y = ¢x. So if Theorem 4.2 is taken into consideration,

- 12 - T - I2 -
il il
J12 J12

1 kls kI T g
X_4—4a el Ox el _{0 e}

eiIQ eib
ej]2 ejIQ

L 6]6[2 i L ekIQ i

1s found.

5 Gershgorin’s Theorem in Commutative Elliptic Octo-
nion Matrices

A way to locate the roots of a polynomial is to indicate the location of the eigen-
values of the matrix corresponding to the polynomial. For this, Gershgorin disks
that contain these eigenvalues are defined. The Gershgorin theorem ensures that the
combination of these disks includes all eigenvalues.

Considering the definition of the adjoint matrix given in Definition 3.4 and the prop-
erties of adjoint matrix given in Theorem 3.4, the eigenvalue set of A = A1 + eAs €
Unxn (COp) can be defined. In that case, the eigenvalue of A is A € CO, and the
eigenvector 0 # x € Upx1 (CO,) corresponding to the eigenvalue \ at the same time
providing of Az = Az is available. Then, the eigenvalue set of A is defined by

E(A)={A€CO,: Ax=Xr 3z 0},

[5]. Now let’s give the fundamental theorem of algebra, which is the basis of the
Gershgorin Theorem.

Theorem 5.1. A is n X n type commutative elliptic octonion matriz, has at most
2n elliptic quaternion eigenvalues and 4n elliptic eigenvalues.

Proof. Let A = A1 + Ase € Unxn (COp) and XA € Hp be an eigenvalue of A. Since
there exist 0 # x = 21 + x2e € Unx1 (CO,) and the column vector x, Az = Az is
provided. From here

(A1 + Aze) (z1 + x2€) = Azt + Az2e,
A1 + Aszo = Ax1 and Aixo + Asxi = \xo

can be written and from the above equations

(& 4 ()= ()
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is found. In that case, it is seen that the commutative elliptic octonion matrix A
has at most 2n elliptic quaternion eigenvalues. In addition, if a commutative elliptic
octonion matrix has at most 2n elliptic quaternion eigenvalues, it can also have at
most 4n elliptic eigenvalues and the proof is complete. O

Corollary 5.1. Let A € Upxn (COp) and& (n(A)) ={N€ Hp: n(A)y= Ay ,Jy #0}
be the set of eigenvalues of adjoint matriz 1 (A) , then
§(A)NH, =¢(n(A4))

is provided.
Theorem 5.2. Let A = A1+ Aze € Unxn (COp) and A = A1+X2e be an eigenvalue of
A. Then X is an eigenvalue of A if and only if there exist x1,x2 € H;,le (z1 #0, z2 #0)
such that

Al — )\1] A2 — )\2] X1 o 0

AQ — )\2] Al — )\1[ T2 - O ’

Proof. Let A = A1 + Aze € Upxn (COp) and X = A1 + A2e be the eigenvalue
of A. A = A1 + Aze is an eigenvalue of A if and only if there exists x1,22 €
Hg“ (1 # 0, x2 #0) such that

(A1 + Aze) (z1 + x2e) = (A1 + Aze) (z1 + z2€) .

Hence
(A1 — )\1In) r1 + (AQ — )\an) xo =0
(A1 — Alfn) T2 + (A2 — Az[n) xr1 = 0.

can be written and using these obtained equations, we may write
Al — )\1] A2 — )\2] X1 _ 0
A2 — )\2[ Al — /\1] T2 o 0 ’

Theorem 5.3 (Gershgorin Theorem). Let A = (ai;j) € Unxn (COyp). Then Gersh-
gorin set for commutative elliptic octonion matrices is given as follows

O

£(4)cJ{aeCOp: Jla—aul < Ri}
i=1
where Ry = Y |lag]-
J=1,i#j

Proof. Let A € Muxn (COp), A be the eigenvalue of A = (a;;) and = # 0 be
the corresponding eigenvector then Ax = Az. Also z; is component of = such that
lz:|| > ||lz;]| for all j then we have ||z;|| > 0 and Az; corresponds to the i** component
of vector Az which means that

n
)\.’L’i: E AijTj.
j=1
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For this reason, we may write
n n
AT — @i = Z AijTj = ()\ — a”):rl = Z A;jTj.
J=1,i%j J=1,i]
Taking the norm of both sides in the above equation
n
A= aw)zil = || > ayzy
J=1,i#]

is obtained. Then make use of triangle inequality is written the following inequalities

n
(A =ai)zl| < X lagz,l,

j:l,i;flj
A —a)ll llzall < > Nagll sl
N J=1,i#j
[A—au)ll < ¥ laiyll = Ri.
J=1,i#j

So, we have

£(A) C U {a € COyp: |la—aii| < Ri}.
i=1

O

l4+itj+k+e ei
ej ek
octonion matriz. Then the adjoint matriz of A is

Example 5.1. Let A = ; A is a commutative elliptic

1+i+j+k 0 1 i
B 0 0 j k
n(4) = 1 i 14i+j+k 0
j k 0 0

The set of eigenvalues of n(A) is

{ 3@+it+j—VEFaFai T4 F06k+2k), $(2+i+j+VEFataiTid;Fok+2k), }
§(n(A) = .

Li+j— VIF5a T4 T4a7 F68), 4Gi+j+vIT5a+T4aiTdajtom)}
The Gershgorin disks are

D,
Dy

geHy: Ja—(+i+j+R)|<al+1},

g€ Hy: ol <ol +1}.

Thus, we obtain
g(A) n Hp C D1 UDs.
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6 Conclusions

In this article, firstly, the notions of similarity and conjugate similar are given
for commutative elliptic octonion matrices with an isomorphism defined between
commutative elliptic octonions and matrices. Then, using linear transformation
¢a (X) = AX® for the first conjugate of the commutative elliptic octonions, ¢4 is
obtained. With this matrix, equivalence AB°* =2 ¢ 4B has been defined. In addi-
tion, the solution of X — AX°' B = C, which is the Kalman-Yakubovich s-conjugate
equation for commutative elliptic octonion matrices, is given and this solution is il-
lustrated with examples. The solution of Kalman-Yakubovich s-conjugate equation
for the conjugates ‘0;" (2 <1 < 7) can be easily obtained by applying similar steps.

On the other hand, the fundamental theorem of algebra is studied for commuta-
tive elliptic octonion matrices. Later, the Gershgorin Theorem that determines the
location of the eigenvalues of a matrix is proved, and the application of the theorem
is given with some examples.
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